
* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

118

ONE-STACK AUTOMATA AS ACCEPTORS OF

CONTEXT-FREE LANGUAGES*

Pradip Peter Dey, Mohammad Amin, Bhaskar Raj Sinha and Alireza Farahani
National University

3678 Aero Court
San Diego, CA 92123

{pdey, mamin, bsinha, afarahan}@nu.edu

ABSTRACT
This paper presents one-stack automata as acceptors of context-free languages;
these are equivalent to Pushdown Automata which are well known in automata
theory. As equivalence relations such as equivalence of Turing Machines and
two-stack Pushdown Automata help in learning general properties of formal
modeling, the equivalence relation of Pushdown Automata and one-stack
automata also helps in learning general properties of context-free language
modeling. One-stack automata are helpful to students for several reasons
including: (1) their contrast with two-stack Pushdown Automata and
multi-stack automata is revealing for computability; (2) their computer
animation is helpful for learning their salient features; (3) their graphical
representation is more easily obtained by augmenting Non-Deterministic Finite
Automata for regular languages which usually precede context-free language
acceptors in the logical sequence of ideas.

INTRODUCTION
The most elegant models of computation are the mathematically defined automata

including Turing Machines (TMs), two-stack Pushdown Automata (2PDA), Linear
Bounded Automata (LBA), Pushdown Automata (PDA) and Finite Automata (FA).
These models are usually studied in the fields of theory of computation, automata theory
and computability. TMs define the most powerful automata class for processing the most
complex sets, namely, recursively enumerable sets. TMs are equivalent to two-stack

CCSC: Northwestern Conference

119

automata or 2PDA as proven by Minsky [7]. Classical forms of Pushdown Automata
(PDA) are required to have exactly one stack and they are non-deterministic unless
otherwise explicitly stated. PDA are acceptors of the class of Context-Free Languages
(CFL's) or sets. They are less powerful than TMs; they cannot accept non-CFL's. Finite
Automata (FA) define a proper subset of CFL's called regular languages denoted by
regular expressions; they are equivalent to Non-deterministic FA (NFA). The above
narrative information with some additional information is usually presented in a tabular
form called the Chomsky hierarchy of grammars and languages as shown in Table 1 [1].

The Chomsky Hierarchy of Grammars and Languages

Type Language/Grammar Acceptor

0 Recursively Enumerable Turing Machines = 2PDA = Post Machines

1 Context-Sensitive Linear Bounded Automata (LBA) = Turing Machines with
bounded tape.

2 Context-Free Pushdown Automata (PDA)

3 Regular Finite Automata (FA) = NFA = Transition Graphs

Table 1: The Chomsky Hierarchy

Unlike other automata classes, PDA are not shown to be equivalent to any other
acceptors [1]. This paper proves that one-stack automata are equivalent to PDA and
suggests that this equivalence relation helps in learning general properties of CFL
acceptors. In addition, computer animation of one-stack automata
(www.asethome.org/onestack) demonstrates their revealing features [3]. Due to
numerous recent research activities with multi-stack automata [2, 6] the name and the
representation of one-stack automata are carefully chosen to avoid possible confusions.
This paper presents essential features of one-stack automata and describes how these
features and their animation promote learning CFL modeling.

ONE-STACK AUTOMATA

One-stack automata are designed as acceptors of CFL's; they are unable to accept
any non-CFL. For example, L1 = { anbn : where n >= 0 } is a well-known CFL [1]
which can be accepted by a one-stack automaton. The definition of the automata is
presented below followed by two examples.

Definition of One-Stack Automata
A one-stack automaton is composed of 5 components:

1. �: a finite non-empty set of symbols called alphabet from which input strings are
formed.
2. S: a finite non-empty set of states including
2a. One start state (marked by -) ;
2b. Some (may be none) final states (marked by +) ;
3. �: an optional pushdown STACK, infinite in one direction. Initially, the STACK is
empty containing all blanks (�).

JCSC 26, 1 (October 2010)

120

4. �: an optional finite set of symbols called the STACK SYMBOLS. If the STACK is
included then the STACK SYMBOLS are also included.
5. T: a finite set of transitions (edge labels) including:
5a. A finite set of transitions that show how to go from some states to some others,
based on reading a specified symbol from input or the null string, ^ .
5b. Some (may be none) special transitions called push transitions each of which reads
a symbol from input and inserts a symbol onto the top of the STACK.
5c. Some (may be none) special transitions called pop transitions each of which reads
a symbol from input and pops a symbol from the top of the STACK.
5d. Some (may be none) special transitions each of which examines if the stack is empty
by reading and popping �.

EXAMPLES AND EXPLANATIONS
One-stack automata are augmented from ̂ -NFA (NFA with null-transitions) to CFL

acceptors with an optional stack and optional push and pop transitions. On the other
hand, every PDA is required to have a stack and every transition in a PDA is specified
with reference to the stack [4, 5, 8]. Every NFA is not a PDA, whereas every NFA is a
one-stack automaton. The latter proposition helps student's understanding of the Chomsky
Hierarchy, because every regular grammar is a CFG. Two examples of one-stack
automata are presented below.

Figure 1: A one-stack automaton for { anbn : where n > = 0 }

An example of a one-stack automaton for L1 = { anbn : where n > = 0 } is shown
in Figure 1, where � is given by {a, b}; S is given by three states each of which is
represented by a circle; the start state is represented by a circle marked by -; the final
state is represented by a circle marked by +; � is given by a horizontal stack; � is given
by {a }; T is given by a set of transitions each of which is represented by an arrow. If
the string, aabb, is given as an input to the automaton of Figure 1 then it would be
accepted by the following sequence of steps: (i) by starting the machine at the start state
(marked by -) and scanning the first a of the input string while traversing the push
transition marked by a, push a which pushes a into the stack; (ii) by scanning the second
a while taking the same push transition marked by a, push a again which pushes another
a into the stack; (iii) by taking the null-transition marked by ^ but not consuming any
symbol from the input; (iv) by scanning the third symbol b from the input while taking

CCSC: Northwestern Conference

121

the loop transition marked by b, pop a; (v) by scanning the final symbol b from the input
while taking the loop transition marked by b, pop a; (vi) by taking the transition
marked by ^, pop �. After the preceding sequence of actions the automaton meets the
acceptance conditions given below and, therefore, accepts the input. The input is
accepted if the following conditions are met: (a) starting with the start state (marked by
-) the automaton reaches one of the accept or final states (marked by +); (b) the stack
is empty; (c) the input is consumed or completely scanned.

Figure 2: A one-stack automaton for { {nc}n : where n >= 0 }

The one-stack automaton of Figure 2 is similar to that of Figure 1; however, it
accepts strings with matching number of {'s and }'s separated by one c; programming
languages such as C++ have a similar string pattern. This machine will accept {{c}} and
reject {{{c}.

That one-stack automata are equivalent to PDA can be proven with the following
two theorems. It is assumed that the reader is familiar with PDA given in textbooks such
as [1]; the proofs of the theorems are given with brevity.

Theorem 1: For every one-stack automaton there is a PDA.
Proof: An arbitrary one-stack automaton can be converted into a PDA. The

alphabet, �, is the same in both. The stack symbols and the stack are also the same in
both. If the start state of the one-stack automaton has incoming transitions then using
null-transitions it is mapped to a new start state without any incoming transitions. The
single start state of the one-stack automaton is converted to the START state of the target
PDA. If any final states of the one-stack automaton have out-going transitions then these
final states are mapped to new final states without out-going transitions using
null-transitions. The final states of the one-stack automaton are then converted to
ACCEPT states of the PDA. Each of the push transitions of the one-stack automaton is
converted to a sequence of READ-PUSH states; if a push transition of the one-stack
automaton has a, push a then it is converted to:

JCSC 26, 1 (October 2010)

122

Similarly, each pop transition of the one-stack automaton is also converted to a sequence
of READ-POP states of the PDA. All other transitions of the one-stack automaton are
converted to the READ states of the PDA. That is a transition labeled a is converted to:

Null-transitions of the one-stack automaton are eliminated by creating sequences of PDA
states.

Theorem 2: For every PDA there is a one-stack automaton.
Proof: Any arbitrary PDA can be converted to a one-stack automaton. The

alphabet, �, is the same in both. The stack symbols and the stack are also the same in
both. The START and ACCEPT states of the PDA are converted to the corresponding
start and final states of the one-stack automaton and if necessary null-transitions are
added. A sequence of READ-PUSH states is converted to a push transition of one-stack
automaton; if

is given in the PDA then it is converted to a single loop push transition labeled by a,
push a. Similarly, a sequence of READ-POP states of the PDA is converted to a single
loop pop transition. Other READ states are converted to a corresponding transition with
the same label. The REJECT states of the PDA are deleted; one-stack automata do not
have REJECT states; they just crash if no path can be found for the letter read from the
input buffer as in FA, NFA and TMs [1].

Since PDA are equivalent to one-stack automata, every formal aspect proven for
PDA would apply to one-stack automata also. Thus, one-stack automata are also
equivalent to CFGs, since PDA are proven to be equivalent to CFG's [1, 4, 5, 8].
Equivalence relations are often used in textbooks as learning exercises. Animation of
one-stack automata clearly shows use of stack for matching strings without counting [3].
In a survey, 22 out of 25 respondents (88%) found one-stack automata helpful in learning
CFL processing.

CCSC: Northwestern Conference

123

CONCLUDING REMARKS
One-stack automata are equivalent to PDA. This equivalence may be considered in

a learning environment because learners may get a better understanding by comparing
related features of the two. The equivalence relation of PDA and one-stack automata
helps in learning general properties of CFL modeling. Some learners may also like the
stack related generalization that zero-stack automata are equivalent to regular grammars;
they accept regular languages; they do not accept non-regular languages. One-stack
automata are equivalent to CFG's; they accept CFL's; they do not accept non-CFL's. Two
or multi-stack automata are equivalent to un-restricted phrase structure grammars and
they accept recursively enumerable sets.*

REFERENCES

[1] Cohen, D., Introduction to Computer Theory, 2nd Edition, New York, NY: John
Wiley & Sons, 1997.

[2] Dassowa, J., Mitranab, V., Stack cooperation in multistack pushdown automata,
Journal of Computer and System Sciences, 58 (3), 611-621, 1999.

[3] Dey, P. P., Farahani, A., One-Stack Automata Animation,
http://www.asethome.org/onestack, retrieved April 12, 2010.

[4] Hopcroft, J. E., Motwani, R., Ullman, J., Introduction to Automata Theory,
Languages, and Computation, Pearson Education, 2007.

[5] Lewis, H. R., Papadimitriou, C. H., Elements of the Theory of Computation, 2nd
Edition, New Jersey: Prentice_Hall, 1998.

[6] Limaye, N., Mahajan, M., Membership Testing: Removing Extra Stacks from
Multi-stack Pushdown Automata, Language and Automata Theory and
Applications, LNCS, Springer, 2009.

[7] Minsky, M. L, Recursive insolvability of Post's problem of 'Tag' and other topics
in theory of Turing Machines, Annals of Mathematics, 437-55, 1961.

[8] Sipser, M., Introduction to the Theory of Computation, 2nd Edition, PWS
Publishing, 2006.

* Comments of some anonymous CCSC/NW reviewers were very useful.

